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1. Introduction

The quest for a Lagrangian description of the worldvolume theory of coincident M2-branes

in M-theory has been a problem of longstanding interest. Important guidance comes from

space-time symmetries, most notably SO(8) invariance and maximal supersymmetry, and

from the relation between M2-branes in compactified M-theory and D2-branes in Type IIA

string theory. A further constructive insight is to sharpen the formulation of the problem

via the identification of a specific decoupling limit in which the M2-brane worldvolume

degrees of freedom dynamically decouple from the surrounding eleven dimensional super-

gravity modes. Concretely, this decoupling is achieved by restricting the worldvolume

theory to the very long wavelength modes. In this limit, the M2-brane theory should take
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the form of a 2+1-dimensional local quantum field theory with SO(8) superconformal sym-

metry. Until very recently, however, it was not known how to write down any nontrivial

theories of this sort, apart from a free theory describing a single M2-brane.

The work of Bagger and Lambert [1 – 3], and Gustavsson [4, 5], following earlier

work [6, 7], showed that a manifestly supersymmetric and SO(8) invariant Lagrangian

can be constructed given a “three-algebra”, a generalization of a Lie algebra based on an

antisymmetric triple product structure. It seemed plausible that the worldvolume theory

of coincident M2-branes should lie somewhere in this class of theories. Initially, how-

ever, only a single example of a three-algebra was known, and this example has now been

proven [8, 9] to be the only nontrivial example with positive definite metric (apart from

direct sums of copies of this algebra with a trivial algebra). The corresponding field theory

does appear to be related to M2-branes, in particular two M2-branes, but on an M-theory

orbifold [10 – 12].1

A proposal for the worldvolume theory of coincident M2-branes in flat space has been

made in [13 – 15], henceforth called the BF membrane model. This theory is based on

a Lorentzian “three-algebra”,2 and its gauge structure is that of a three dimensional BF

theory. The BF membrane model captures some of the expected properties of the theory

on multiple M2-branes, including the absence of a coupling constant, a close relation [16] to

three dimensional SYM on D2-branes and a moduli space corresponding to N M2-branes

in flat space.

As already mentioned in [13 – 15], the BF membrane model has ghosts in the classical

theory, arising from the timelike direction in the “three-algebra”. Despite the fact that

ghosts cannot propagate in loops due to the special nature of the interactions of the BF

membrane model, it remains an important issue to understand whether the theory has

negative norm states.

In this paper we enrich the BF membrane model by adding to the theory a set of su-

persymmetric Faddeev-Popov ghosts, preserving all the desired symmetries expected from

the worldvolume theory on M2-branes. We show that the combined action is symmetric

under a BRST transformation, suggesting that it should be interpreted as a gauge-fixed

version of a classical action with an additional gauge symmetry. This acts as a gauged shift

symmetry for bosonic and fermionic fields associated with the wrong-sign kinetic terms.

Via a BRST analysis, we show that this extra symmetry is precisely what we need to ensure

the absence of and negative norm states in the physical Hilbert space.

BRST-invariant actions arise as the gauge-fixed versions of classical actions with gauge-

symmetries. It is therefore natural to ask which classical action our BRST-invariant action

arises from. For the theory expanded about its trivial vacuum, we find that the classical

action is a BF-theory coupled to matter without interactions. This theory has trivial

dynamics. With a nonzero vev for XI
+ (one of the scalars associated with the light-like

directions in the three-algebra), we find that the classical theory is one that may be shown

1The details of the orbifold depend on a discrete parameter that is present in the theory, the level

associated with a Chern-Simons term.
2The fact that the algebras in [13 – 15] are the unique undecomposable three-algebras has been proven

in [17].
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to be equivalent to 2+1 dimensional maximally supersymmetric Yang-Mills theory, though

it does have a formal SO(8) superconformal symmetry if we formally allow transformations

of the XI
+ vev. However, the theory does not directly describe the IR limit of the Yang-Mills

theory, so it gives only the previously known indirect description of M2-branes in flat space.3

It may be that the new formulation offers advantages over the conventional description

of the D2-brane theory. In support of this, we show that by dualizing the gauge field

associated with the noncompact gauge symmetry of the theory, we are able to write down

operators which are gauge invariant and BRST invariant, and which transform in non-

trivial representations of the formal SO(8) R-symmetry. As an example, we write down a set

of operators in the same representation of the superconformal algebra as the chiral primary

operators for the M2-brane theory. Calculating correlation functions of these operators in

the D2-brane theory in a limit where XI
+ goes to infinity may give an algorithm for using

the D2-brane theory to calculate arbitrary correlation functions in the M2-brane theory.

The plan of the paper is as follows. In section 2 we review the main features of the

BF membrane model constructed in [13 – 15]. In section 3 we gauge the shift symmetry

in [13 – 15] and gauge fix all the associated gauge symmetries and show that the gauge fixed

action is described by the Lagrangian in [13 – 15] together with a supersymmetric ghost

action. By analyzing the BRST transformations of the gauge fixed action we show that the

theory has no negative norm states. In section 4 we study the gauge fixed action and make

contact with the theory on multiple D2-branes. In section 5 we discuss gauge invariant

operators in our theory and show that we can construct operators in full multiplets of the

formal SO(8) representations. Section 6 contains conclusions and some technical details

are presented in the appendices.

2. The BF membrane model

Our starting point is the action derived in [13 – 15]. These authors constructed a three-

algebra with Lorentzian metric corresponding to an arbitrary Lie algebra G. The action

for the corresponding Bagger-Lambert-Gustavsson theory is given by

L=−
1

2
Tr

(

(DµXI − BµXI
+)2

)

+ ∂µXI
+(∂µXI

− − Tr(BµXI)) +
i

2
Tr

(

Ψ̄Γµ(DµΨ − BµΨ+)
)

−
i

2
Ψ̄+Γµ(∂µΨ− − Tr(BµΨ)) −

i

2
Ψ̄−Γµ∂µΨ+ + ǫµνλTr

(

Bλ(∂µAν − [Aµ, Aν ])
)

−
1

12
Tr

(

XI
+[XJ ,XK ] + XJ

+[XK ,XI ] + XK
+ [XI ,XJ ]

)2
(2.1)

+
i

2
Tr

(

Ψ̄ΓIJXI
+[XJ ,Ψ]

)

+
i

4
Tr

(

Ψ̄ΓIJ [XI ,XJ ]Ψ+

)

−
i

4
Tr

(

Ψ̄+ΓIJ [XI ,XJ ]Ψ
)

.

Here Dν = ∂ν − 2[Aν , · ], with Aµ a gauge field for the compact gauge group G. The fields

XI , Ψ, and Bµ transform in the adjoint representation for this gauge symmetry, while

the fields XI
+,XI

−,Ψ+, and Ψ− are singlets. The above action does not contain a standard

3In the original version of this paper, it was proposed that by integrating over the XI
+ vev in the path

integral, superconformal invariance could be restored. We no longer feel that the justification for doing so

is correct.
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Yang-Mills kinetic term for the gauge boson Aµ, but rather a term of the B ∧ F form,

which underlies the symmetry structure of (2.1). Via the presence of this additional one-

form field B, the theory has an extra non-compact gauge symmetry, under which the fields

transform infinitesimally as

δ1Bµ=Dµζ ; δ1X
I = ζXI

+ ; δ1X
I
− = Tr(ζXI) ;

δ1Ψ=ζΨ+ ; δ1Ψ− = Tr(ζΨ) . (2.2)

The non-compact and compact symmetry together combine into a gauge invariance under

the (2 dim G)-dimensional gauge group given by the Inonu-Wigner contraction of G ⊗ G,

which corresponds to the semidirect sum of the of translation algebra with the Lie algebra

G, where G acts on the dim G translation generators in the obvious way.

The theory described by the above Lagrangian has several non-trivial properties, that

support its interpretation as the multi-M2 brane worldvolume theory.

(i) Most remarkably, the Lagrangian (2.1) is invariant under a full SO(8) superconformal

symmetry. The supersymmetry transformations read

δXI=iǭΓIΨ; δXI
+ = iǭΓIΨ+ ; δXI

−= iǭΓIΨ− ;

δAµ=
i

2
XI

+ǭΓµΓIΨ −
i

2
XI ǭΓµΓIΨ+ ; δBµ = iǭΓµΓI [XI ,Ψ] .

δΨ =(DµXI − BµXI
+) ΓµΓIǫ −

1

2
XI

+[XJ ,XK ]ΓIJKǫ ; δΨ+ = ∂µXI
+ΓµΓIǫ ;

δΨ−=(∂µXI
− − Tr(BµXI

−))ΓµΓIǫ −
1

3
Tr(XIXJXK)ΓIJKǫ ; (2.3)

(ii) The theory described by (2.1) does not have a tunable coupling constant: overall mul-

tiplication of the Lagrangian by a constant can be absorbed into a suitable rescaling

of the fields. XI → g XI , XI
+ → g−1 XI

+ XI
− → g3 XI

−, B → g2 B.

(iii) In case G = U(N), the moduli space of vacua contains a branch of the form (R8)N/SN ,

which is as expected for a theory describing N M2 branes in flat eleven dimensional

space. However, it is the Osp(8|4) invariant vacuum of the theory in the unbroken

phase which holographically describes M-theory in AdS4 × S7. The states of the BF

model in the broken phase correspond to half supersymmetric geometries which are

AdS4 × S7 only asymptotically.

(iv) When restricted to (or, as we shall see, expanded around) the background with con-

stant X+ and Ψ+ = 0, the Lagrangian (2.1) reduces to that of 2+1-dimensional SYM

theory, the low energy theory on N D2-branes, where the SYM coupling constant is

identified with g2
Y M = X2

+ [15].

Given all these properties, the theory described by (2.1) appears to be a step in the

right direction towards finding the multi-M2 brane worldvolume theory.

An outstanding problem, however, is that the theory (2.1) includes fields, X+ and X−

with a non-positive definite kinetic term, and which arise from the necessity of using a

three-algebra with Lorentzian signature. We now proceed to enrich the theory in (2.1) and

show that the enriched model has no negative norm states.
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3. Eliminating the ghosts — by adding ghosts

An unsettling feature of the theory (2.1), arising from the non-positivity of the three-algebra

metric, is that a set of scalar fields4 XI
0 and fermionic fields Ψ0 have a wrong-sign kinetic

term. It has been suggested that this may not pose a problem if we make a projection on

the space of physical states, or simply because the XI
+ and XI

− fields cannot propagate in

loops (since the interaction terms depend on XI
+ but not XI

−).

We argue that by gauging the global shift symmetry

XI
− → XI

− + aI

Ψ− → Ψ− + χ (3.1)

of the action (2.1) and properly gauge fixing all the associated gauge symmetries, that

the gauged fixed Lagrangian is described by the original theory (2.1) together with a

supersymmetric Faddeev-Popov ghost action. Moreover, we show that the gauge fixed

theory is free of negative norm states.

3.1 Gauging the shift symmetry

We start by introducing bosonic and fermionic gauge fields aI
µ and ηµ. These gauge fields

are associated with gauging the shift symmetry of X− and its superpartner Ψ−

δXI
−=βI , δΨ− = χ ;

δaI
µ=∂µβI , δηµ = ∂µχ . (3.2)

The Lagrangian (2.1) can be made invariant under these new gauge transformations, if we

add the terms

L̃ = −aI
µ∂µXI

+ − iη̄µΓµΨ+ , (3.3)

which turn the XI
− and Ψ− derivatives into covariant derivatives. It can be shown that the

modification of the action preserves supersymmetry if we supplement the supersymmetry

variations (2.3) with the additional terms

δ̃Ψ− = −ΓµΓIǫ aI
µ

δ̃aI
µ = iǭΓIΓµΓνην

δ̃ηµ = −
1

2
(∂µaI

ν − ∂νaI
µ)ΓνΓIǫ .

Note that these supersymmetry variations commute with the shift gauge symmetry and

that (3.4) generate the expected supersymmetry algebra on the fields, as we show in ap-

pendix A.5

The presence of an extra gauge symmetry here appears to be just what we need to

save the theory from negative norm states. By choosing a gauge XI
− = 0, and Ψ− = 0, we

4Where we define A± = A0 ± A1.
5The commutator of two supersymmetry transformations generate on-shell a translation and gauge

transformations.
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completely eliminate the problematic kinetic term, and the remaining integrals over cI
µ and

ηµ appear to force ∂µXI
+ = 0 and Ψ+ = 0. However, the new Lagrangian has extra gauge

symmetries, arising from the fact that only ∂µaIµ and γµηµ appear in the action, so care

must be taken in gauge fixing these new symmetries. In detail (3.3) is invariant under6

aI
µ → aI

µ + εµνρ∂
ναρI (3.4)

and

ηµ → ηµ + χµ −
1

3
ΓµΓνχ

ν . (3.5)

Because of this extra gauge symmetry, simply integrating over cI
µ and ηµ after fixing the

gauge XI
− = Ψ− = 0 leads to a divergence in the path integral.7

A careful discussion of the quantization of this theory taking into account the additional

gauge symmetries is presented in appendix B. The result of this analysis is that the gauge

fixed action is described by the Lagrangian (2.1) with the addition of a supersymmetric

ghost action, which we now analyze in some detail.

3.2 Interpretation as a gauge-fixed action

In the previous section, we have seen that it is possible to promote the X− and Ψ− shift

symmetries to gauge symmetries in a way that is consistent with superconformal invariance.

Taking for granted that this symmetry should be understood as a gauge symmetry and

doing the proper gauge fixing procedure, as described in appendix B, we find that the gauge

fixed theory can interpreted as the original action (2.1) with a corresponding Faddeev-

Popov ghost action

Lghost = −∂µ
c
I
−∂µc

I
+ + iχ̄+Γµ∂µχ− , (3.6)

where c
I
± are 8 anti-commuting scalars, and χ± are commuting SO(8) spinors. This ghost

action is N = 8 supersymmetric, and is invariant under the following supersymmetry

transformations

δcI
± = iǭΓIχ± , δχ± = ∂µc

I
±ΓµΓI ǫ . (3.7)

The action (2.1) combined with the ghost action (3.6) is invariant under the nilpotent

BRST transformations

δbrstX
I
− = εc

I
− , δbrstΨ− = εχ−

δbrstc
I
+ = εXI

+ , δbrstχ+ = εΨ+. (3.8)

The fact that the original action combined with the ghost action has a BRST symmetry

implies that we should think of the combination as a gauge-fixed action. As usual, the

corresponding gauge symmetry of the ‘unfixed’ theory is given by the BRST transformation

of the matter fields, so we see that it is precisely the shift gauge symmetry for the fields

XI
− and Ψ−.

6Note that αρI and χν do not all correspond to independent gauge transformations since the gauge

transformations corresponding to αρI = ∂ρβI and χν = Γνξ are trivial. They correspond to reducible gauge

transformations.
7The set of delta functions δ(∂µXI

+) that we end up with are too many to leave the single integral over

XI
+ finite.
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3.3 Physical states

Physical states are defined by the BRST cohomology:

Qbrst|phys〉 = 0 , |phys〉 ≡ |phys〉 + Qbrst|anything〉 . (3.9)

The BRST invariance condition can be solved trivially by requiring that all positive fre-

quency (= annihilation) modes of c
I
−, X+, χ− and Ψ+ annihilate the physical states.

All states created by negative frequency (= creation) modes of the same four fields are

spurious: they are orthogonal to this particular subspace, and in fact, can be written as

Qbrst|something〉.

3.4 A simple example: the U(1) theory

To see explicitly that our BRST-invariant action results in only positive-norm states, let

us consider the simplest nontrivial example, the BF theory for gauge group U(1).

We will see that this theory is precisely equivalent to the theory of single membrane,

the free superconformal theory

L = −
1

2
∂µXI∂µXI +

i

2
Ψ̄Γµ∂µΨ .

Now, the BF theory in the U(1) case reduces to

L = −
1

2
(∂µXI − BµXI

+)2 + ∂µXI
+∂µXI

− − ∂µXI
+BµXI +

1

2
ǫµνλBµFνλ

+
i

2
Ψ̄Γµ∂µΨ − iΨ̄+Γµ(∂µΨ− − BµΨ) + Lghost.

Here, the ghost action Lghost is given in (3.6) and Fµν is the field strength for Aµ. We can

treat this field strength as an independent variable if we introduce a Lagrange multiplier

term

σǫµνλ∂µFνλ,

to enforce the Bianchi identity. Here σ is the dual gauge scalar, that, after integrating out

Fνλ, furnishes a ‘magnetic’ dual description of the Aµ degrees of freedom.8 The equations

of motion for Fµν then give

Bµ = ∂µσ . (3.10)

Typically, it is argued that the dual gauge scalar field σ is naturally defined to be periodic.

Since B is associated with a non-compact gauge symmetry, the equation (3.10) indicates

that σ should be allowed to range over the full real axis. Making the substitution for B

here gives

L = −
1

2
(∂µXI − ∂µσXI

+)2 + ∂µXI
+∂µXI

− − ∂µXI
+∂µσXI

= +
i

2
Ψ̄Γµ∂µΨ − iΨ̄+Γµ(∂µΨ− − ∂µσΨ) + Lghost

8Note that in the vacuum with XI
+ = vI , the equation of motion of Bµ identifies Bµ = 1

v2
ǫµνλF νλ.
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The field σ transforms under the B gauge symmetry as

σ → σ + ζ

so we can fix this gauge symmetry by setting σ to zero. The resulting action is simply

L = −
1

2
∂µXI∂µXI +

i

2
Ψ̄Γµ∂µΨ

+∂µXI
+∂µXI

− − iΨ̄+Γµ∂µΨ− − ∂µ
c
I
−∂µc

I
+ + iχ̄+Γµ∂µχ− ,

so we end up with the free superconformal theory plus a free BRST invariant and super-

conformal invariant action for the +/− fields and the ghosts.

The BRST transformations (3.8) imply that acting with creation operators correspond-

ing to XI
−, cI

+, Ψ−, or χ+ on any physical state takes us out of the physical subspace, while

acting with creation operators corresponding to XI
+, cI

−, Ψ+, or χ− on any physical state

gives us BRST exact states. Thus, the BRST cohomology for the theory in the second

line is trivial, so the BRST-invariant U(1) BF theory is precisely equivalent to the free

superconformal theory describing a single membrane.

4. Classical action

It is natural to ask whether the BRST-invariant action we have found is the gauge-fixed

version of some classical action. We now consider this question.

4.1 The theory for constant XI
+

To start, consider the original action (2.1), taking XI
+ = vI constant and setting Ψ+ = 0.

The resulting action is

L0 = −
1

2
Tr

(

(DµXI − BµvI)2
)

+
i

2
Tr

(

Ψ̄ΓµDµΨ
)

+
1

2
ǫµνλTr

(

BλFµν

)

(4.1)

−
1

12
Tr

(

vI [XJ ,XK ] + vJ [XK ,XI ] + vK [XI ,XJ ]
)2

+
i

2
Tr

(

Ψ̄ΓIJvI [XJ ,Ψ]
)

.

Note that the constant value of XI
+ breaks conformal invariance and breaks SO(8) invari-

ance to SO(7) invariance. Remarkably, as pointed out by [15], this action for any nonzero

vI turns out to be exactly the low-energy D2-brane action, i.e. maximally supersymmetric

2+1 dimensional Yang-Mills theory. For example, in the case where vI = gδI8, we note

that the B gauge symmetry can be used to set X8 = 0 , while the remaining integral over

B gives

L = Tr

(

−
1

4g2
FµνFµν −

1

2
(DµXi)2 +

i

2
Ψ̄ΓµDµΨ +

i

2
gΨ̄Γ8Γi[X

i,Ψ] +
g2

4
[Xi,Xj ]2

)

where i = 1, . . . , 7.

– 8 –
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4.2 Reduction of the full theory to constant XI
+

Now, in our BRST-invariant action, we do not want to take XI
+ or Ψ+ to be constant.

However, consider now the theory with some nonzero vev XI
+ = vI where XI

+ and all other

fields are taken to be dynamical. Using the BRST transformations above, it is not hard to

see that the complete action takes the form

L0 + {Q,Ξ} .

That is, our full action differs from the simple action (4.1) by a term that is BRST exact.9

In fact, any BRST invariant action may be written in this way, and one typically identifies

L0 with the classical action and the BRST-exact term as a gauge-fixing term.10 Different

choices of Ξ do not change the physical observables (though one typically chooses Ξ so

that all global symmetries of the theory are preserved). Thus, it appears that for a fixed

non-zero value of the zero mode of XI
+, our theory simply corresponds to a particular

gauge-fixing of the D2-brane theory plus X− and Ψ− fields that do not appear in the

classical Lagrangian.

A special case in which we do preserve superconformal invariance is to set XI
+ = 0.

However, in this case we reach the more severe conclusion that the full action can be written

as a BRST exact piece plus the simple action

L0 = Tr

(

−
1

2
(DµXI)2 +

i

2
Ψ̄ΓµDµΨ +

1

2
ǫµνλBµFνλ

)

(4.2)

Note that this action by itself is superconformally invariant and invariant under the B

gauge transformation (we simply set all the terms in the transformation laws involving the

+ and - fields to zero). However, at least naively, the theory appears to be free, giving N2

copies of the free superconformal multiplet, since integrating out the B gauge field seems

to eliminate all the degrees of freedom of A. This is also consistent with the point that for

finite vI we obtain a D2-brane theory with coupling g2 = v2: for length scales L ≪ 1/v2

correlation functions are trivial, and this length scale goes to infinity in the limit.

4.3 Summary

In the end, it is reasonable to ask whether we have really gained anything here, since

we have ended up with either a trivial superconformal theory or a reformulation of the

D2-brane theory, where one expects to recover the full SO(8) superconformal invariance

only at the infrared fixed point [18, 19]. However, the formal SO(8) invariance that we

have restored may be useful, and as we will emphasize in the next section, one important

advantage with the new description is that we can write down the full SO(8) multiplets of

physical operators.

9It is important to recall that the zero mode of XI
+ effectively does not appear in the BRST transfor-

mation otherwise, we would conclude that even the vI -dependent terms in L0 were BRST exact.
10Note that while XI

− and Ψ− do not appear in the classical action, we should consider them to be part of

the classical fields, since their shift-gauge symmetry is the one we are fixing by going to the BRST-invariant

action. On the other hand, the XI
+ and Ψ+ fields play the role of ‘h’ fields (or ‘Nakanishi-Lautrup’ fields)

in the BRST-invariant action, and should not be thought of fields in the classical action.

– 9 –
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5. Observables

The basic physical observables for our theory are correlation functions of operators which

are BRST-invariant and also gauge-invariant under the remaining non-abelian gauge sym-

metries.11 As we mentioned earlier, one of the nice features this formalism is that we will

be able to construct full SO(8) multiplets of operators.

5.1 SO(8) invariant basis

Note first that operators such as

OI1···In = Tr(XI1 · · ·XIn),

while invariant under the compact gauge symmetry, are not invariant under the noncompact

gauge transformations associated with the Bµ gauge field

δBµ = Dµζ δXI = XI
+ζ .

Hence it appears that the longitudinal component of XI (the one parallel to XI
+) is spurious,

and that only the 7 transverse components of XI (the ones orthogonal to XI
+) survive as

physical degrees of freedom. The scalar fields XI by themselves do not appear to be

sufficient to build a full SO(8) multiplet of physical observables.

A useful hint for how to obtain these operators is provided via the relation of our theory

to 2+1 SYM. The SYM theory only has SO(7) symmetry. SO(8) invariance emerges via

a specific reordering of the degrees of freedom in the IR theory, whereby the Aµ gauge

boson gives rise to a dual scalar mode φ, that combines with the other 7 scalar fields into

an SO(8) covariant vector. Thus we should expect that also in our theory, the full SO(8)

multiplets must somehow involve the dual gauge field, and we will now see that this turns

out to be correct.

It is possible to construct an SO(8) covariant version of XI that does not transform

under the B gauge symmetry. To do this, we can consider the combination

Y I = XI − XI
+φ (5.1)

where φ is a field built from A and B with the noncompact gauge transformation law

δφ = ζ . (5.2)

Formally, we can take such a field to be determined in terms of A and B by the covariant

equation

D2φ = DµBµ , (5.3)

which is solved by

φ =
1

D2
DµBµ .

11In principle, we could also consider correlation functions of BRST-invariant operators which are not

gauge-invariant, but whose gauge-variation is BRST exact. The correlation function of such operators will

be gauge-invariant, since the physical states are BRST invariant.
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It seems that φ is not really a local operator. However, in a gauge where φ = 0, the

expression (5.1) reduces to XI , so the construction appears to be local at least in this

gauge choice.

We can introduce the scalar φ as a new independent field in the Lagrangian, by adding

the term

Dνλ(Bν − Dνφ) + Dνω̄Dνω . (5.4)

Here λ can be viewed as a dual Lagrange multiplier field, whose equation of motion implies

the identification (5.3). The second term in (5.4) is a ghost action, that ensures that the

functional determinant produced by integrating out λ, φ cancels out. The total action has

the non-compact gauge invariance

δBν = Dνβ , δφ = β , δXI = βXI
+ . (5.5)

But now let’s use this invariance to choose the gauge fixing condition φ = 0. The

action (5.4) then turns into the standard gauge fixing action, imposing the gauge condition

DνBν = 0. (5.6)

In this gauge, the operators (5.1) simply reduce to Y I = XI .

Geometrically, we can clarify the situation as follows. The scalar field φ defined

via (5.3) can be recognized as the dual gauge scalar, the “magnetic” dual to the non-

abelian gauge field A. Eqn (5.3) should be compared with (3.10), that defines the dual

gauge scalar for the abelian theory. As emphasized earlier, this dual gauge boson is not

periodic, but takes values on the full real axis. The non-compact gauge symmetry thus

acquires an interesting geometric significance, reflecting the physical equivalence between

the dual gauge boson and the longitudinal component of the scalar fields XI , or rather,

that the two scalar fields in fact constitute only one single scalar degree of freedom. The

gauge choice φ = 0 represents a physical gauge, in which this dual gauge scalar degree of

freedom is completely absorbed into the longitudinal component of XI .

A priori, using the φ = 0 gauge, we can just use the fields XI to build physical

observables. There is a slight subtlety, however. The gauge fixed theory still has a BRST

invariance

δ1Bν = εDνω , δ1X
I = εωXI

+ , δ1ω̄ = ελ , (5.7)

which explicitly does not leave XI invariant. This invariance can be restored as follows.

Recall that the M2-brane theory has another set of ghost fields, associated with the X−

shift symmetry, an therefore another BRST invariance, given in (3.8). Let us denote this

BRST variation by δ2:

δ2X
I
− = εc

I , δ2c
I
+ = εXI

+ . (5.8)

The combined BRST symmetry is the sum of the two transformations

δbrst = δ1 + δ2. (5.9)

– 11 –
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Physical operators do not need to be invariant under both transformations δ1 and δ2

separately, but only under the sum. The following operators

Y I = XI + ωc
I
+ (5.10)

are invariant under this combined symmetry. Physical observables are obtained by taking

combinations

OI1I2...Ip = Tr(Y I1Y I2 . . . Y Ip), (5.11)

and are invariant under the compact gauge symmetries and the BRST transformation (5.9).

For most types of correlations functions, the ghost terms in Y I are not expected to

contribute. So in practice, we can think of the Y I operators as simply being equal to XI .

Indeed, one can argue that we for most practical purposes can use the physical operators

OI1I2...Ip = Tr(XI1XI2 . . . XIp) .

These operators transform non-trivially under the non-compact gauge transformations.

However, via a similar argument as above, one can show that its gauge variation can be

written as a total variation under the δ2 BRST symmetry, and thus decouples from physical

correlation functions.

5.2 Chiral primary operators

In the worldvolume theory of M2-branes, by the AdS/CFT correspondence, the local opera-

tors of finite dimension should be in one-to-one correspondence with the states of M-theory

on AdS4 × S7 [20]. In particular, in the large N limit, we should have protected operators

in one-to-one correspondence with the spectrum of supergravity fluctuations on AdS4×S7.

These operators appear in infinite dimensional multiplets of the superconformal algebra,

which may be generated by the action of superconformal generators on chiral primary op-

erators. An important set of observables for the theory are the correlation functions of

these operators and their descendants. In principle, one should be able to compute these

correlation functions using correlation functions in the D2-brane theory by scaling all dis-

tances to infinity at the end. However, in the usual formulation, it is not clear how to write

the required full multiplets of operators.

In the reformulation of the D2-brane theory that we arrive at, we can write operators

in full multiplets of the formal SO(8) symmetry. In particular, operators in the same

multiplets as the chiral primaries may be written as

Tr(Y (I1 · · ·Y In)) − traces

and the multi-trace generalizations, where Y I is defined in the previous section. Assuming

that the formal SO(8) symmetry that we find becomes the full quantum SO(8) symmetry

in the IR limit of the theory, it seems plausible that calculating correlation functions of

these operators in our theory then taking the lengths scales to infinity (perhaps with a

suitable rescaling of the operators) could give a way to calculate correlation functions of

chiral primary operators in the M2-brane theory starting from the D2-brane theory.

– 12 –
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6. Conclusions

In this paper we have shown that if we interpret the BF membrane model of [13 – 15] as

a gauge-fixed action, and add to it a corresponding set of supersymmetric Faddeev-Popov

ghosts, then the resulting theory is devoid of negative norm states. We have shown that for

a constant non-zero vev of X+, the theory is equivalent to the maximally supersymmetric

SYM theory living on D2-branes.

In the process of studying local gauge invariant operators, we have found that the

gauge field Bµ associated to the non-compact gauge symmetry of the BF membrane model

can be dualized exactly into a scalar. This construction allows us to write down gauge

invariant and BRST invariant operators transforming in non-trivial representations of the

formal SO(8) symmetry. This symmetry remains very obscure in the definition of the

theory as the infrared limit of three dimensional maximally supersymmetric SYM, where

only an SO(7) subgroup of the symmetry is manifestly realized. The action considered in

this paper allows us to bypass these difficulties and give a direct SO(8) covariant realization

of operators.

To conclude, we note that while the present treatment of our theory by adding Fadeev-

Popov ghosts and interpreting the full action as a BRST-invariant gauge-fixed action does

not lead directly to a non-trivial superconformally invariant quantum theory, it might be

that some other treatment gives a more direct relation to M2-branes.

Note added. While this paper was being finished, the paper [21] appeared in the arXiv,

which has some overlap with this paper.
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A. Supersymmetry algebra

Here we would like to show that

[δ1, δ2]ηµ = vν(∂νηµ − ∂µην) , [δ1, δ2]c
I
µ = vν(∂νcI

µ − ∂µcI
ν) , (A.1)
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with

vµ = −2iǭ2Γ
µǫ1 (A.2)

modulo gauge transformations and equations of motion.

We will use the relation

ΓµΓν ǫ = (ηµν − εµνρΓ
ρ) ǫ (A.3)

We find that

[δ1, δ2]c
I
µ = vνF I

µν − ωIJF J
νρε

νρ
µ (A.4)

with ωIJ = i
2 ǭ2[Γ

I ,ΓJ ]ǫ1.

The second term in (A.4) is a gauge transformation of the form

cI
µ → cI

µ + ǫµ
νλ∂νbI

λ .

We now consider the fermions. In light of the gauge symmetry (3.5), we need only

verify that

[δ1, δ2]Γ
µηµ = vνΓµ∂νηµ + Γµ(∂µχ) (A.5)

for some χ. For completeness, we should also check that the commutator of SUSYs acting

on Ψ− includes a term

[δ1, δ2]Ψ− = χ .

Using the Fierz identity below, we find

[δ1, δ2]Γ
µηµ =

i

8
ΓIΓνΓ

IΓµΓα∂µηαǭ2Γ
νǫ1

+
i

16
ΓIΓKJΓIΓµΓα∂µηαǭ2Γ

JKǫ1

+
i

384
ΓIΓνΓ

MLKJΓIΓµΓα∂µηαǭ2Γ
JKLMΓνǫ1

+Γµ(∂µχ)

Here, the last line vanishes in light of the relation

ΓIΓJKLMΓI = 0 .

It is straightforward to show that the remaining terms take the form

[δ1, δ2]Γ
µηµ = −2iΓµ∂νηµǭ2Γ

νǫ1 + Γµ∂µχ

for some χ, as desired.

A.1 Fierz Identity

The following relation is useful in verifying that the supersymmetry algebra closes:

For a general real symmetric 32 × 32 matrix M , we have

M =
1

32
ΓATr(MΓA) +

1

64
ΓBATr(MΓAB) +

1

3840
ΓEDCBATr(MΓABCDE) .
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Applying this to

M = ǫ2ǭ1 − ǫ1ǭ2

and using the fact that

Γ012ǫ = ǫ

we find

ǫ2ǭ1 − ǫ1ǭ2 =

(

1

16
Γµ +

1

32
Γαβǫαβ

µ

)

ǭ2Γ
µǫ1

+
1

32
ΓJI(1 + Γ012)ǭ2Γ

IJǫ1

+
1

384
ΓµΓLKJI ǭ2Γ

IJKLΓµǫ1

If we also have

Γ012χ = χ

then

ǫ2ǭ1χ − ǫ1ǭ2χ =
1

8
Γµχ ǭ2Γ

µǫ1

+
1

16
ΓJIχ ǭ2Γ

IJǫ1

+
1

384
ΓµΓLKJIχ ǭ2Γ

IJKLΓµǫ1

B. Gauge fixing the shift symmetry

In this section, we discuss the proper gauge-fixing procedure starting with the classical

action from section 3.1.

We focus on the bosonic gauge lagrangian

Lgauge = (aλ + ∂λX−) ∂λX+. (B.1)

It has two gauge symmetries

(1) δaλ = ∂λα, δX− = α ; (B.2)

(2) δaλ = ǫλµν∂µαν . (B.3)

The two symmetries allows imposing the two gauge conditions

(1) ∂ν
aν = 0, (B.4)

(2) ǫλµν∂µaν = 0 . (B.5)

The associated gauge fixing term (using a weighted gauge) and ghost action are

Lgf =
1

2
(∂ν

aν)
2 +

1

4
(ǫλµν∂µaν)

2 =
1

2
∂µ

a
ν∂µaν (B.6)

Lghost = ∂ν
c+∂νc− −

1

2
(∂µC̄ν − ∂νC̄µ)(∂µCν − ∂νCµ) (B.7)
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This ghost action introduces an additional gauge symmetry, so in this case, we need to

add an additional gauge-fixing term for the C ghost, and a ghost-for-ghost action12 but

for now, let us omit this and leave the C gauge-symmetry unfixed. The total action has a

BRST symmetry:

δaλ = ε(∂λc− + ǫλµν∂µCν) , δX− = εc− , (B.8)

δc+ = ε∂ν
aν , δC̄λ = εǫλµν∂µaν (B.9)

Now let us integrate out aν . The saddle point equation is

aν =
1

�
∂νX+. (B.10)

The resulting action (after applying a shift X− → X− + 1
2�

X+) is simply

∂νX−∂νX+ + Lghost (B.11)

The BRST transformations simplify to

δX− = εc− , δc+ = εX̃+ , (B.12)

where X̃+ ≡ ∂ν 1
�

∂νX+ is the field X+ with its constant zero mode removed. Thus, we end

up with exactly the BRST-invariant action of section 3.2 plus the additional ghost action

for CI
µ. But these vector ghosts are completely decoupled from the rest of the theory, both

in the action and in the BRST transformations that define physical states. Thus, while the

theory with a gauged shift symmetry technically still contains ghosts, it should be sensible

to simply truncate the ghost sector of the theory and define the physical theory to be what

remains. Equivalently, we can simply take the BRST-invariant action of section 3.2 (or the

corresponding classical action of section 4.1) as our starting point.
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